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Abstract— Trajectory optimizers are a powerful class of
methods for generating goal-directed robot motion. Differential
Dynamic Programming (DDP) is an indirect method which
optimizes only over the unconstrained control-space and is
therefore fast enough to allow real-time control of a full hu-
manoid robot on modern computers. Although indirect methods
automatically take into account state constraints, control limits
pose a difficulty. This is particularly problematic when an
expensive robot is strong enough to break itself.

In this paper, we demonstrate that simple heuristics used
to enforce limits (clamping and penalizing) are not efficient in
general. We then propose a generalization of DDP which ac-
commodates box inequality constraints on the controls, without
significantly sacrificing convergence quality or computational
effort. We apply our algorithm to three simulated problems,
including the 36-DoF HRP-2 robot. A movie of our results can
be found here goo.gl/eeiMnn

I. INTRODUCTION

It would be appealing to specify the behavior of a robot in
terms of simple cost functions, and let an intelligent control
algorithm handle the details. This is also the idea behind
the task-function [1] or the operational-space [2] approaches:
instead of working in the configuration space, the motion is
specified with a more abstract function related, for example,
to the position of the end effector or to the output value
of a sensor. The task-function approach naturally leads to
inverse kinematics [3] or operational-space inverse dynamics
[4] and is particularly active nowadays in humanoid robotics
[5], [6], [7] where it is turned into control machinery by
using task sequencing [7]. Classically, a simple proportional
or proportional-derivative controller in the task space is
used [8], but it results in simple trajectories that behave
badly when coming close to obstacles or joint limits. The
convergence basin of these local methods is then very small.
Ad-hoc task trajectories can be learned [9], which enlarge
the convergence basin with a-priori knowledge and provide
a consistent way to define complex task trajectories, but this
is difficult to generalize to new situations.

Trajectory optimization is the process of finding a state-
control sequence which locally minimizes a given cost func-
tion. Shooting methods – which trace their ancestry to the
two-point boundary-value problem of the venerable Maxi-
mum Principle [10] – are an important sub-class of trajec-
tory optimization methods. Unlike so-called direct methods
which explicitly represent the state, these methods parame-
terize only the controls, and obtain the states from forward
integration (hence “shooting”). States are never explicitly
represented in the optimization space and consequently these
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Fig. 1. Left: The humanoid robot HRP-2. Right: Real-time reaching and
balancing behaviors are described in Section IV and in the attached movie.

methods are also known as indirect [11]. Because the dynam-
ics are folded into the optimization, state-control trajectories
are always strictly feasible and “dynamic constraints” are
unnecessary. If additionally the controls are unconstrained,
so is the optimization search-space and shooting methods
can enjoy the benefits of fully unconstrained optimization.

DDP is a second-order shooting method [12] which under
mild assumptions admits quadratic convergence for any sys-
tem with smooth dynamics [13]. It has been shown to posses
convergence properties similar, to or slightly better than,
Newton’s method performed on the entire control sequence
[14]. Classic DDP requires second-order derivatives of the
dynamics, which are usually the most expensive part of
the computation. If only the first-order terms are kept, one
obtains a Gauss-Newton approximation known as iterative-
Linear-Quadratic Regulator (iLQR) [15], [16], which is sim-
ilar to Riccati iterations, but accounts for the regularization
and line-search required to handle the nonlinearity.

Work on constrained indirect methods began with [17],
see [18] for a review. The work most closely related to
ours is [19], see section III-C below. The reader may notice
that these papers had been published several decades ago.
More recent work on constrained trajectory optimization for
robotics has mostly focused on direct methods [20][21][22].
In that context the problem is transcribed into a generic
sequential quadratic programming (SQP) which easily admits
both equality and inequality constraints. We suspect that the
reason these methods have been more popular is the general
availability of off-the-shelf optimization software for generic
SQPs. Both types of methods display different characteristics



and tradeoffs. The direct approach discards the temporal
structure and is forced to search in a constrained space
which is slower, however it is far easier to find better optima
through continuation. The indirect approach is faster and
better suited for warm-starting, but is far more sensitive to
local minima.

In this paper, we consider the solution of control-
constrained problems using indirect methods. We show ex-
perimentally in simulation that simplistic ways of handling
them are inefficient and detrimental to convergence. We then
propose an original solution to explicitly take the inequalities
into account using a projected-Newton QP solver which is in
the general class of active-set methods. The capability of the
method is shown in simulation on a wide range of systems
(random linear systems, a nonholonomic car and a humanoid
robot). In Section II, we quickly recall the Differential
Dynamic Programming algorithm. We characterize the box-
constrained control problem in Section III, along with the
proposed original solution. Finally, Section IV describes the
results, illustrating the usefulness of our approach.

II. DIFFERENTIAL DYNAMIC PROGRAMMING

This section recalls the basics of DDP that are necessary
for the algorithm proposed in Section III. More details are
available, see e.g. [12] for the historical presentation or [23]
for a modern treatment using the same notations as below.

A. Local Dynamic Programming

We consider a system with discrete-time dynamics, but a
similar derivation holds for the continuous case [12]. The
dynamics is modeled by the generic function f

xi+1 = f(xi,ui), (1)

which describes the evolution from time i to i+1 of the state
x ∈Rn, given the control u ∈Rm. A trajectory {X,U} is a
sequence of states X ≜ {x0,x1 . . . ,xN}, and corresponding
controls U ≜ {u0,u1 . . . ,uN−1} satisfying (1).

The total cost denoted by J is the sum of running costs
` and final cost `f , incurred when starting from x0 and
applying U until the horizon N is reached:

J(x0,U) =
N−1

∑
i=0

`(xi,ui) + `f(xN).

As discussed above, indirect methods represent the trajectory
implicitly using only the controls U. The states X are
recovered by integration of (1) from the initial state x0. The
solution of the optimal control problem is the minimizing
control sequence

U∗ ≜ argmin
U

J(x0,U).

Letting Ui ≜ {ui,ui+1 . . . ,uN−1} be the tail of the control
sequence, the cost-to-go Ji is the partial sum of costs from
i to N :

Ji(x,Ui) =
N−1

∑
j=i

`(xj ,uj) + `f(xN).

The Value at time i is the optimal cost-to-go starting at x:

Vi(x) ≜ min
Ui

Ji(x,Ui).

The Value of the final time is defined as VN(x) ≜ `f(xN).
The Dynamic Programming Principle then reduces the min-
imization over a sequence of controls Ui, to a sequence of
minimizations over a single control, proceeding backwards
in time:

V (x) = min
u

[`(x,u) + V ′(f(x,u))] (2)

In (2) and below we omit the time index i and use V ′ to
denote the Value at the next time step.

B. Quadratic Approximation

DDP involves iterating a forward pass (or rollout) which
integrates (1) for a given U, followed by a backward pass
which compute a local solution to (2) using a quadratic Tay-
lor expansion. Let Q(δx, δu) be the change in the argument
of the RHS of (2) as a function of small perturbations of the
i-th nominal (x,u) pair:

Q(δx, δu) = `(x+ δx,u+ δu) + V ′(f(x+ δx,u+ δu)) (3)

The Q-function is the discrete-time analogue of the Hamil-
tonian, sometimes known as the pseudo-Hamiltonian. The
second-order expansion of Q is given by:

Qx = `x +fT
x V

′
x (4a)

Qu = `u +fT
uV

′
x (4b)

Qxx = `xx+fT
x V

′
xxfx + V ′

x ⋅ fxx (4c)

Qux = `ux+fT
uV

′
xxfx + V ′

x ⋅ fux (4d)

Quu = `uu+fT
uV

′
xxfu + V ′

x ⋅ fuu. (4e)

where the last terms of (4c, 4d, 4e) denote the product of a
vector with a tensor. The optimal control modification δu∗

for some state perturbation δx, is obtained by minimizing
the quadratic model:

δu∗(δx) = argmin
δu

Q(δx, δu) = k +Kδx. (5a)

This is a locally-linear feedback policy with

k ≜ −Q−1
uuQu and K ≜ −Q−1

uuQux (5b)

the feed-forward modification and feedback gain matrix,
respectively. Plugging this policy back into the expansion of
Q, a quadratic model of V is obtained. After simplification
it is

∆V = − 1
2
kTQuuk (6a)

Vx = Qx −KTQuuk (6b)

Vxx = Qxx−KTQuuK. (6c)

The backward pass begins by initializing the Value function
with the terminal cost and its derivatives VN = `f(xN), and
then recursively computing (5) and (6).



C. Line Search

Once the backward pass is completed, the proposed
locally-linear policy is evaluated with a forward pass:

x̂0 = x0 (7a)
ûi = ui + αki +Ki(x̂i − xi) (7b)

x̂i+1 = f(x̂i, ûi), (7c)

where α is a backtracking search parameter, set to 1 and then
iteratively reduced. Finally, this backward-forward process is
repeated until convergence to the (locally) optimal trajectory.

D. Complexity and Regularization

The step taken by DDP corresponds to a Newton-Raphson
step on the whole unconstrained optimal-control problem
[14]. Although DDP searches in the space of control tra-
jectories U ∈ Rm×N , it solves the m-dimensional problem
N times, not a single problem of size mN . The difference is
made stark when considering N Hessians of size m×m rather
than a large Nm×Nm matrix, as in the direct representation.
Since factorization complexity is cubic in the dimension, the
respective complexities are O(Nm3) and O(N3m3).

As with all second-order methods, in order to guarantee a
descent direction, regularization must be used when the Hes-
sian loses positive definiteness. Typically, a Tikhonov regu-
larization term is added when inverting Quu in (5). When
the costs are least-square residuals c(x,u) = 1

2
∣∣r(x,u)∣∣2,

then the Hessians of `xx, `ux and `uu are approximated
by the square of the Jacobian (`xx ≈ rT

xrx etc.), while the
Hessians of f are neglected. This approximation corresponds
to the Gauss-Newton variation and is referred as iLQR or
iLQG [16]. The regularization parameter and the descent
step length α are adapted online following a Levenberg-
Marquardt heuristic. Finally, the suboptimal solution ob-
tained after a fixed number of iterations (typically 1) can be
used immediately in a Model Predictive Control setting [23].

III. CONTROL LIMITS

Due to the strict feasibility property of indirect methods,
inequality constraints on the state are handled automatically
under the condition that f maintains regularity, which is
obtained by smoothing hard constraints like rigid contacts
[24]. This has been shown to be very efficient, even in
non-smooth situations like bipedal locomotion, both with
direct [25] and indirect [23] optimization. However, the
same solution cannot be applied directly to handle inequality
constraints on the control. This is an important drawback, as
the control might be the joint torques (limited by the motor
limits [26]), air pressure or valve aperture of pneumatic robot
[27], or as shown in the experiments robot reference angles
(limited by the joint range).

In the following, we consider inequality constraints of the
form:

¯
b ⩽ u ⩽ b̄ (8)

with elementwise inequality and
¯
b, b̄ the respective lower

and upper bounds. The box constraint accurately describes
nearly any set of standard mechanical actuators, and will

allow us to use a specialized active-set algorithm which is
more efficient and easier to implement. A box-constraint
solver can be immediately generalized to any linear inequal-
ity constraints using slack variables [28].

In the next sections, two classical ways to enforce the con-
trol limits are formalized. These easy-to-implement heuristics
will be shown to have significant drawbacks. The last section
presents our original solution.

A. Naı̈ve Clamping

A first attempt to enforce box constraints is to clamp the
controls in the forward-pass. The element-wise clamping,
or projection operator, is denoted by the double square
brackets ⟦⋅⟧b:

⟦u⟧b = min(max(u,
¯
b), b̄),

It is tempting to simply replace (7b) in the forward-pass with

ûi = ⟦ui + αki +Ki(x̂i − xi)⟧b, (9)

however the corresponding search direction may not be a
descent direction anymore, harming convergence. Clamping
can also be introduced to the control modification k in (5):

k ← ⟦k + u⟧b − u,

and it might also seem sensible that the rows of K cor-
responding to clamped controls should be nullified, since
the feedback is inactive in these dimensions. Though this
might seem reasonable and intuitive, it is demonstrated in
the experimental section to be very inefficient.

B. Squashing Functions

Another way to enforce box constraints is to introduce a
sigmoidal squashing function s(u) on the controls

xi+1 = f(xi, s(ui)) (10)

where s() is an element-wise sigmoid with the vector limits

lim
u→−∞

s(u) =
¯
b lim

u→∞
s(u) = b̄.

For example s(u) = b̄−
¯
b

2
tanh(u) + b̄+

¯
b

2
is such a function.

A cost term should be kept on the original u and not only
on the squashed s(u), otherwise it will reach very high
or low values and get stuck on the plateau (see Section
IV-B for a practical discussion). An intuition for the poor
practical performance of squashing is given by the non-
linearity of the sigmoid. Since the backward pass uses a
locally quadratic approximation of the dynamics, significant
higher order terms will always have a detrimental effect on
convergence.

C. Proposed Algorithm

1) Problem Formulation: Clamping does not produce
satisfying results since the clamped directions are not taken
into account during the inversion of Quu. On the other
hand, squashing introduces an artificial non-linearity in the
saturated directions in a way that prevents good performance.
We propose to directly take into account the control limits



while minimizing the quadratic model of Q, which amounts
to solving a quadratic program (QP) subject to the box
constraints (8) at each timestep. The problem is written:

minimize
δu

Q(δx, δu) (11)

subject to
¯
b ⩽ u + δu ⩽ b̄

The QP is a well understood problem with many methods
of solution [29] which together form the backbone of the
Sequential-QP approach to nonlinear optimization. When
choosing an appropriate solver, two characteristics of the
problem at hand should be considered. First, thanks to the
Bellman principle, we are solving several small QP’s rather
than a single big one. Second, since each QP along the
backward pass is similar to the next one, an algorithm that
can enjoy warm starts should be preferred. The warm-start re-
quirement rules out some classes of algorithms, for example
interior-point methods. Since these methods glide smoothly
to the solution from the interior, they do not benefit from
being initialized at the boundary. Standard active-set methods
do traverse the boundary and can be warm-started, but
account separately for each constraint activation/deactivation.

2) Proposed Solution: The Projected-Newton class of
algorithms are a sub-class of active set methods which were
developed for problems with simple constraints, where the
projection operator is trivial – like clamping in the case of the
box. Their key feature is the projected line-search, whereby
the search-point is continuously clamped, allowing multiple
constraints to form and break in each iteration. In [30],
Bertsekas analyses these methods and proves convergence for
a large class of approximate Hessians. In the following we
describe a special case thereof, which uses the exact Hessian
at all times. Its key feature, which we prove in the Appendix,
is that if the initial point has the same active constraint set
as the optimum, the solution will be reached in a single
iteration. Previous work on incorporating control limits in
DDP [17][19], made reference to generic QP algorithms and
did not take into account the considerations detailed above.

Since δx is not known during the backward pass, the QP
needs to compute both the feedfoward and feedback gains k
and K. The first is obtained directly as the optimum of

k = argmin
δu

1

2
δuTQuuδu +QT

xδu

subject to
¯
b ⩽ u + δu ⩽ b̄

However, we require that out QP solver also return the
decomposition of the free dimensions of Quu, denoted by
Quu,f . This decomposition is used to compute the optimal
feedback gain Kf = −Quu,fQux. It follows that Kc, the rows
of K corresponding to clamped controls, are identically zero.
See Appendix I for more details.

3) Complexity: In problems with elaborate dynamics, the
effort required to compute the derivatives in the RHS of (4) is
often significantly larger than that required for the backward-
pass. In that case the extra effort required by the box-QP
solver will go unnoticed. If however we ignore the time re-
quired for the derivatives, or make it very small by computing

them in parallel, the leading complexity term comes from the
Cholesky factorization the Projected Newton solver, which
is O(m3). Since standard DDP requires one factorization
anyway in (5), the question is how many extra factorizations
on average does the box-QP solution impose. The algorithm
performs a factorization whenever the active set changes,
which might not be often, depending on the problem (see
e.g. the middle row of Figure 2). As reported below, in our
experiments the average number of factorizations was never
larger than 2.

IV. RESULTS

We begin with an initial comparison of the three so-
lution types on a set of simple linear systems randomly
selected in Sec. IV-A. We then compare the behavior of
squashing and quadratic programming on a nonholonomic
car problem in Sec. IV-B. Although for this simple problem
analytical optimality can be derived [31], the numerical
solution provides an interesting and generic way to control it.
Finally, we demonstrate box-DDP on a complex platform, the
humanoid robot HRP-2. All the experiments are performed in
simulation, which is enough to demonstrate the relationship
with respect to unconstrained classical DDP. Applying DDP
(and MPC at large) to complex systems such as HRP-2
remains one of the most exciting perspective of this work,
which we will discuss in the conclusion.

A. Linear-Quadratic problems

The finite-horizon Linear-Quadratic (LQ) optimal control
problem is solved by exactly one full iteration of DDP. When
constraints are added, several iteration are necessary. It is
described by linear dynamics:

xi+1 = fxxi + fuui.

and the quadratic optimization criterion

minimize
U

1
2
xT
N `f,xxxN + 1

2

N−1

∑
i=0

(xT
i `xxxi + uT

i `uuui) .

We generated random LQ problems as follows. The state
dimension n was drawn uniformly from {10 . . .100}. The
control dimension m was drawn from {1 . . . ⌊n

2
⌋}. For a

time-step h the random dynamics matrices were fx = In +
hN(n,n) and fu = hN(n,m), where N is a matrix with
standard normally distributed elements Nij ∼ N(0; 1), and
I is the identity. The cost matrices were `xx = `f = hIn and
`uu = cuhIm with cu the control-cost coefficient. Control
bounds were

¯
b = −1m and b̄ = 1m. The initial state was

drawn from the normal distribution x0 = N(n,1).
The bottom row of Figure 2 shows a comparison between

the clamping and squashing heuristics and the proposed
algorithm. The clamping barely converges to any optimum.
The squashing demonstrates a sub-linear convergence. The
box-QP solution shows a very characteristic quadratic con-
vergence. Quadratic convergence, which amounts to conver-
gence like Newton method means the doubling of correct
significant bits in the solution with each iteration. This
manifests as quadratic-looking traces on a log-plot of the
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Fig. 2. Control-bounded random linear systems. Here h = 0.01, n = 20,
m = 7 and N = 200. Top: A typical state trajectory X ≡ {x0 . . .x200}, the
passive dynamics (U = 0) are shown in gray. Middle: the control trajectory
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solution of 20 random LQ problems using the three methods described. Left:
Clamping barely converges to the minimum. Center: Squashing displays
sublinear convergence. Right: The proposed box-DDP algorithm exhibits
quadratic convergence.

convergence trace, as seen in Figure 2. The average number
of factorizations per iteration was 1.5. To see why this
number is so small, observe the low frequency of constraint-
set changes in the middle row of the figure.

B. Car Parking

For the car-like robot, one of the control variables, the an-
gle of the front wheels, is a kinematic, rather than a dynamic
variable. When controls specify kinematic variables, bounds
arise naturally from the geometry of the problem rather
than from actuator limits. This makes kinematic problems
an important class for our proposed algorithm.

(x, y, θ, v) is the 4-dimensional state. x, y is the position
of the point midway between the back wheels. θ is the angle
of the car relative to the x-axis. v is the velocity of the front
wheels. The two control signals are ω the front wheel angle
and a the front wheel acceleration. For Euler dynamics with
a time-step h and letting d denote the distance between the
front and back axles, the rolling distance of the front and

back wheels are respectively

f = hv (13a)

b = f cos(ω) + d −
√
d2 − f2 sin2(ω), (13b)

and the h-step dynamics are

x′ = x + b cos(θ) (13c)
y′ = y + b sin(θ) (13d)

θ′ = θ + sin−1(sin(ω)f
d
) (13e)

v′ = v + ha. (13f)

The “parking” task is encoded as a final-cost on the distance
of the last state from (0,0,0,0), i.e. at the plane origin, facing
east and motionless. Distance was measured using the Huber-
type function z(x, p) =

√
x2 + p2−p. This function is roughly

quadratic in a p-sized neighborhood of the origin and linear
thereafter. The state cost is

`f(x) = z(x, px) + z(y, py) + z(θ, pθ) + z(v, pv)

We chose px = py = 0.1m, pθ = 0.01rad and pv = 1m/s
to compensate for the relative difficulty of changing each
variable. Because it is easier to stop the car (v = 0) than to
orient it (θ = 0), we would like the optimizer to focus on the
harder task once near enough to the goal-state. A running
cost is added to penalize cartesian distance from the origin

`(x) = 0.01(z(x, px) + z(y, py))

This term encourages parking maneuvers which do not take
the car far from the origin. `(u) = cωω2 + caa2 with cω =
0.01 and ca = 0.0001. Cost coefficients were chosen to be
small in order to encourage the controller to hit the bounds
bω = ±0.5rad and ba = ±2m/s2.

Since the “clamping” heuristic performed so badly in the
previous case, here we used the car parking domain to
compare box-DDP only to the “squashing” heuristic. The
squashing function used was

ω(ω̃) = 0.5 × tanh(ω̃)
a(ã) = 2 × tanh(ã).

In order to prevent the “pre-controls” (ω̃, ã) from diverging,
a small explicit cost on these was added

`(ω̃, ã) = cωω2 + caa2 + 10−6(ω̃2 + ã2).

This additional term is small enough to not significantly
modify the problem, but large enough to pull (ω̃, ã) back
towards the origin when they are too large.

Fig. 3 compares the results obtained with the two solvers.
Similar trajectories are obtained, but with much higher gains
k,K in the squashing case. Fig. 4 gives the convergence
rate comparison. The squashing-function solution barely
converge while the box DDP converges quadratically.
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C. Humanoid robot

Like many modern full-size humanoid robots, HRP-2 [32]
is powered by direct-current electrical motors coupled with
high-ratio gears (typically, harmonic drive with ratio 1/200)
which make it very stiff. Two solutions are possible to apply
the DDP on a robot such as HRP-2. The first one is to
perform precise system identification, taking into account
the well-known motor dynamics, the PD-controller transfer
function and the harmonic gear frictions. The inverse of this
model provides a feed-forward torque control input [33].
However, despite some recent work in this direction [34],
direct feed-forward current control is not yet a functional
option, while the lack of joint torque sensor on most of hu-
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Fig. 4. Cost decrease ∆J of the two algorithms for the car-parking
problem. Box-DDP converges quadratically after 64 iterations, while the
squashing-function solution has barely converged by 500.

manoid robots prevent feedback torque control. Alternatively,
the low-level PD controllers of the robot can be modeled
inside the forward dynamics. The control input u is then the
reference joint angle. This solution is appealing, since the
PD controllers can be considered strong enough to nullify the
gear dry friction, which need not be modelled. The control is
then limited by the joint range, which should not be hit as it
would likely damage the robot. For this reason box-DDP is
appealing since the joint references output by the algorithm
are guaranteed to be inside the limits.

Optimal control allows for very simple specification of
the robot movement. In the demonstrated example, the robot
has to reach a moving target with its right gripper, while
standing and if necessary stepping to maintain its balance.
Several cost functions are used to define various aspects of
the motion of the robot. The balance is enforced by setting
three cost functions: on the chest and pelvis angles θ to keep
them horizontal; on the chest altitude z; and on the capture
point a to keep it on the line between the feet. The two last
ones penalize the linear and angular momenta:

`bal(x) =cθ (∥θpelvis(x)∥2 + ∥θchest(x)∥2)
+ cz(zchest(x) − z∗)2 + cαz(a(x) − a⊥(x))

with z∗ the initial chest altitude, a⊥ the orthogonal projection
of a on the line between the ankles, cθ = 0.3, cz = 0.2 and
ca = 1. The stepping is emphasized by putting a cost to keep
the feet parallel to the ground and oriented toward the target:

`step(x) =croll∥θlf,rf(x)∥2 + cyaw(γfeet(x) − γ∗)2



Fig. 5. Reaching a moving target, stepping when necessary. A sequence of frames of full body motion synthesized in real-time for the HRP2 robot. The
robot is trying to reach the moving target while stabilizing itself. When the rotation causes the legs to collide, the robot stumbles, takes a step to balance
itself, and reaches for the target once more.

with θlf,rf the angle of the feet with respect to the ground,
γfeet the yaw angle of the line between the two ankles,
γ∗ the yaw angle of the target in the egocentric cylindrical
coordinates, croll = 0.05 and cyaw = 0.1. Finally, the reaching
is triggered by a cost on the distance to the target:

`reach = creach∣∣p(x) − p∗∣∣2

with p the gripper position and p∗ the target position. All
the cost are squares of residuals, which enable us to use the
Gauss-Newton approximation of the second derivatives. This
is an important shortcut since the second order derivatives
would be very expensive to compute with a system of the size
of HRP-2. Collision avoidance is enforced by the simulator
in the forward pass.

An overview of the obtained motion is given in Fig. 5.
The complete motion, along with a set of other examples,
are displayed on the companion video.

V. CONCLUSION

This paper proposed a modification of the DDP which
allows us to incorporate control limits. This is a key feature
for applying the DDP algorithm to real robots. In particular, it
is mandatory when the control input specifies some kinematic
variables, like the steering direction of the car or the joint
references of the humanoid. Our solution is very fast and
keeps the good convergence properties of the DDP algorithm.
It is also exact, in the sense that the specified constraint can
not be exceeded in any situation. It enables us to control
the humanoid robot HRP-2 in real time with a desktop
personal computer in simulation, while interacting with it
using an haptic device. The next step is to apply the same
control scheme on the real HRP-2 robot. The key point for
that is to introduce some feedback terms in addition to the
state estimation to make the MPC behavior more robust to
modeling errors.
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APPENDIX I
PROJECTED-NEWTON QP SOLUTION

Consider the generic problem:

minimize
x

f(x) = 1
2
xTHx + qTx (14a)

subject to
¯
b ⩽ x ⩽ b̄ (14b)

The algorithm proceeds by iteratively identifying the ac-
tive constraints, and then performing a projected Newton step
using the reduced Hessian in the free sub-space. Begin at
some feasible initial guess x = ⟦x⟧b and define the gradient
g = ∇xf = q+Hx. The complimentary sets of clamped and
free indices c and f are

c(x) =
⎧⎪⎪⎨⎪⎪⎩
j ∈ 1 . . . n

RRRRRRRRRRR

xj =
¯
bj , gj > 0

or
xj = b̄j , gj < 0

⎫⎪⎪⎬⎪⎪⎭
(15a)

f(x) = {j ∈ 1 . . . n ∣ j ∉ c} (15b)

For readability, we sort the index partition {f, c}:

x← [xf

xc
] , q← [qf

qc
] , H← [Hff Hfc

Hcf Hcc
] , (16)

The gradient in the free subspace is

gf = ∇xf
f = qf +Hffxf +Hfcxc,

The Newton step in the free subspace is then:

∆xf = −H−1
ff gf = −H−1

ff (qf +Hfcxc) − xf .

The full step is therefore:

∆x = [∆xf

0c
] . (17)

The projected Newton candidate point x̂ for a line-search
parameter α is

x̂(α) = ⟦x + α∆x⟧b. (18)

A backtracking line-search reduces α until the Armijo con-
dition [35] is satisfied

f(x) − f(x̂(α))
gT(x − x̂(α))

> γ (19)

with 0 < γ < 1
2

the minimally acceptable reduction ratio. We
use the oft-quoted γ = 0.1 in the experiments. By design, the



Algorithm I x∗ ←Ð QP[H, q, b, b̄, x]
Repeat until convergence:

1) Get indices: Equations (15).

2) Get Newton step: Equations (16).

3) Convergence: If ∥gf∥ < ε≪ 1, terminate.

4) Line search: Decrease α in (18) until (19) is satisfied.
Accept the candidate x← x̂(α).

key feature of the algorithm is the following:

Lemma. If the initial point x has the same clamped con-
straints as the optimum c(x) = c(x∗), then the solution will
be reached in a single iteration.

Proof. Setting ∆xf = 0 at the optimum, we have from (17)
that x∗f = −H−1

ff (qf +Hfcxc). If c(x) = c(x∗) then xc =
x∗c and therefore ∆xf = x∗f − xf taking us directly to the
minimum in one step.
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